Cart (Loading....) | Create Account
Close category search window
 

An optimal whitening approach to linear multiuser detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eldar, Y.C. ; Res. Lab. of Electron., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Chan, A.M.

We propose a new linear multiuser receiver for synchronous code-division multiple-access (CDMA) systems, referred to as the orthogonal multiuser (OMU) receiver. Unlike the linear minimum mean-squared error (MMSE) receiver, the OMU receiver depends only on the signature vectors and does not require knowledge of the received amplitudes or the channel signal-to-noise ratio (SNR). Several equivalent representations of the receiver are developed with different implications in terms of implementation. In the first, the receiver consists of a decorrelator demodulator followed by an optimal whitening transformation on a space formed by the signatures. In the second, the receiver consists of a bank of correlators with correlating vectors that are projections of a set of orthogonal vectors, and are closest in a least squares sense to the decorrelator vectors and also closest in a least squares sense to the signature vectors. In the third, the receiver consists of a single-user matched filter (MF) followed by an optimal whitening transformation on a space formed by the signatures. We derive exact and approximate expressions for the probability of bit error, as well as the asymptotic signal-to-interference+noise ratio (SINR) in the large system limit. The analysis suggests that over a wide range of channel parameters the OMU receiver can outperform both the decorrelator and the single-user MF and perform similarly to the linear MMSE receiver, despite not knowing the channel parameters.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 9 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.