By Topic

Classified information: the data clustering problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Memarsadeghi ; Dept. of Comput. Sci., Maryland Univ., MD, USA ; D. P. O'Leary

Many projects in engineering and science require data classification based on different heuristics. designers, for example, classify automobile engine performance as acceptable or unacceptable based on a combination of efficiency, emissions, noise levels, and other criteria. Researchers routinely classify documents as "relevant to the current project" or "irrelevant". Genome decoding divides chromosomes into genes, regulatory regions, signals, and so on. Pathologists identify cells as cancerous or benign. We can classify data into different groups by clustering data that are close with respect to some distance measure. In this project, we investigate the design, use, and pitfalls of a popular clustering algorithm, the k-means algorithm.

Published in:

Computing in Science & Engineering  (Volume:5 ,  Issue: 5 )