Cart (Loading....) | Create Account
Close category search window
 

A penalized-likelihood image reconstruction method for emission tomography, compared to postsmoothed maximum-likelihood with matched spatial resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nuyts, J. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Fessler, J.A.

Regularization is desirable for image reconstruction in emission tomography. A powerful regularization method is the penalized-likelihood (PL) reconstruction algorithm (or equivalently, maximum a posteriori reconstruction), where the sum of the likelihood and a noise suppressing penalty term (or Bayesian prior) is optimized. Usually, this approach yields position-dependent resolution and bias. However, for some applications in emission tomography, a shift-invariant point spread function would be advantageous. Recently, a new method has been proposed, in which the penalty term is tuned in every pixel to impose a uniform local impulse response. In this paper, an alternative way to tune the penalty term is presented. We performed positron emission tomography and single photon emission computed tomography simulations to compare the performance of the new method to that of the postsmoothed maximum-likelihood (ML) approach, using the impulse response of the former method as the postsmoothing filter for the latter. For this experiment, the noise properties of the PL algorithm were not superior to those of postsmoothed ML reconstruction.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:22 ,  Issue: 9 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.