Cart (Loading....) | Create Account
Close category search window

Application of symbolic computer algebra in high-level data-flow synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peymandoust, A. ; Comput. Syst. Lab., Stanford Univ., CA, USA ; De Micheli, G.

The growing market of multimedia applications has required the development of complex application-specified integrated circuits with significant data-path portions. Unfortunately, most high-level synthesis tools and methods cannot automatically synthesize data paths such that complex arithmetic library blocks are intelligently used. Namely, most arithmetic-level optimizations are not supported and they are left to the designer's ingenuity. In this paper, we show how symbolic algebra can be used to construct arithmetic-level decomposition algorithms. We introduce our tool, SymSyn, that optimizes and maps data flow descriptions into data paths using complex arithmetic components. SymSyn uses two new algorithms to find either minimal component mapping or minimal critical path delay (CPD) mapping of the data flow. In this paper, we give an overview of the proposed algorithms. We also show how symbolic manipulations such as tree-height-reduction, factorization, expansion, and Horner transformation are incorporated in the preprocessing step. Such manipulations are used as guidelines in initial library element selection to accelerate the proposed algorithms. Furthermore, we demonstrate how substitution can be used for multiexpression component sharing and CPD optimization.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:22 ,  Issue: 9 )

Date of Publication:

Sept. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.