By Topic

Deadlock-free dynamic reconfiguration schemes for increased network dependability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pinkston, T.M. ; Dept. of Electr. Eng. systems, Univ. of Southern California, Los Angeles, CA, USA ; Pang, R. ; Duato, J.

Network-based parallel computing systems often require the ability to reconfigure the routing algorithm to reflect changes in network topology if and when voluntary or involuntary changes occur. The process of reconfiguring a network's routing capabilities may be very inefficient and/or deadlock-prone if not handled properly. We propose efficient and deadlock-free dynamic reconfiguration schemes that are applicable to routing algorithms and networks which use wormhole, virtual cut-through, or store-and-forward switching, combined with hard link-level flow control. One requirement is that the network architecture use virtual channels or duplicate physical channels for deadlock-handling as well as performance purposes. The proposed schemes do not impede the injection, transmission, or delivery of user packets during the reconfiguration process. Instead, they provide uninterrupted service, increased availability/reliability, and improved overall quality-of-service support as compared to traditional techniques based on static reconfiguration.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:14 ,  Issue: 8 )