Cart (Loading....) | Create Account
Close category search window

Channel assignment using genetic algorithm based on geometric symmetry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghosh, S.C. ; Adv. Comput. & Microelectron. Unit, Indian Stat. Inst., Kolkata, India ; Sinha, B.P. ; Das, N.

The paper deals with the channel assignment problem in a hexagonal cellular network with two-band buffering, where channel interference does not extend beyond two cells. Here, for cellular networks with homogeneous demands, we find some lower bounds on the minimum bandwidth required for various relative values of s0, s1, and s2, the minimum frequency separations to avoid interference for calls in the same cell, or in cells at distances of one and two, respectively. We then present an algorithm for solving the channel assignment problem in its general form using the elitist model of genetic algorithm (EGA). We next apply this technique to the special case of hexagonal cellular networks with two-band buffering. For homogeneous demands, we apply EGA for assigning channels to a small subset of nodes and then extend it for the entire cellular network, which ensures faster convergence. Moreover, we show that our approach is also applicable to cases of nonhomogeneous demands. Application of our proposed methodology to well-known benchmark problems generates optimal results within a reasonable computing time.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:52 ,  Issue: 4 )

Date of Publication:

July 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.