By Topic

Theory of ballistic nanotransistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rahman, Anisur ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Guo, Jing ; Datta, Supriyo ; Lundstrom, M.S.

Numerical simulations are used to guide the development of a simple analytical theory for ballistic field-effect transistors. When two-dimensional (2-D) electrostatic effects are small (and when the insulator capacitance is much less than the semiconductor (quantum) capacitance), the model reduces to Natori's theory of the ballistic MOSFET. The model also treats 2-D electrostatics and the quantum capacitance limit where the semiconductor quantum capacitance is much less than the insulator capacitance. This new model provides insights into the performance of MOSFETs near the scaling limit and a unified framework for assessing and comparing a variety of novel transistors.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 9 )