By Topic

Quantum mechanical effects on noise properties of nanoelectronic devices: application to Monte Carlo simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
X. Oriols ; Dept. d'Enginyeria Electron., Univ. Autonoma de Barcelona, Spain

A discussion about the quantum mechanical effects on noise properties of ballistic (phase-coherent) nanoscale devices is presented. It is shown that quantum noise can be understood in terms of quantum trajectories. This interpretation provides a simple and intuitive explanation of the origin of quantum noise that can be very salutary for nanoelectronic engineers. In particular, an injection model is presented that, coupled with a standard Monte Carlo algorithm, provides an accurate modeling of quantum noise. As a test, the standard results of noise in tunneling junction devices are reproduced within this approach.

Published in:

IEEE Transactions on Electron Devices  (Volume:50 ,  Issue: 9 )