By Topic

Using reconstructability analysis to select input variables for artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shervais, S. ; Eastern Washington Univ., Cheney, WA, USA ; Zwick, M.

We demonstrate the use of reconstructability analysis to reduce the number of input variables for a neural network. Using the heart disease dataset we reduce the number of independent variables from 13 to two, while providing results that are statistically indistinguishable from those of NNs using the full variable set. We also demonstrate that rule lookup tables obtained directly from the data for the RA models are almost as effective as NNs trained on model variables.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:4 )

Date of Conference:

20-24 July 2003