By Topic

Statistical learning for detecting protein-DNA-binding sites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Martinetz, T. ; Inst. for Neuro- & Bioinformatics, Univ. of Lubeck, Germany ; Gewehr, J.E. ; Kim, J.T.

Detecting the sites on genomic DNA at which DNA binding proteins bind is a highly relevant task in bioinformatics. For example, the binding sites of transcription factors are key elements of regulatory networks and determine the location of genes on a genome. Usually, for a given DNA binding protein, only a few DNA-subsequences at which the protein binds are known experimentally. The task then is to deduce the global binding characteristics of the protein based on these few positive examples. A widespread approach is the so-called profile-matrix (PM). The PM-approach can be interpreted as a linear classifier (binding word class/non-binding word class) within the space of sequence words, with the profile of the experimentally verified binding sites determining its parameters. In this paper a novel approach called binding-matrix (BM) is introduced. Like the PM, the BM realizes a linear classification, but in contrast to the profile-matrix approach the parameters (matrix) of the classifier is now determined by maximum likelihood estimation. Tested on data from the TRANSFAC database, the maximum likelihood estimation leads to an increase in classification performance by about an order of magnitude.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:4 )

Date of Conference:

20-24 July 2003