By Topic

Accelerating critic learning in approximate dynamic programming via value templates and perceptual learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The concept of value templates and perceptual learning are introduced as refinements to the reinforcement learning (RL) paradigm. We demonstrate a method for accelerating dual heuristic programming (DHP) critic training using value templates and perceptual learning. Both faster and more stable learning are achieved by using the value template and utilizing its inherent constraints to regularize the perceptual learning task. The method is demonstrated by tuning a neurofuzzy control system for a highly nonlinear 2nd order plant proposed by Sanner and Slotine. We take advantage of the TSK model framework throughout to keep the controller, critic, and model components used in DHP highly interpretable.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:4 )

Date of Conference:

20-24 July 2003