By Topic

Gene expression data analysis using support vector machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feng Chu ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Lipo Wang

Cancer classification is an important problem both for clinical treatment and for biomedical research. Considering the good performance of support vector machines (SVMs) on solving pattern recognition problems, we use a C-SVM to process the B-cell lymphoma data. The principal components analysis (PCA) is used for gene selection. A voting scheme is used to do multi-group classification by k(k-1) binary SVMs. The classification results show that SVMs are effective tools for this problem.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:3 )

Date of Conference:

20-24 July 2003