By Topic

Recognition system for EMG signals by using non-negative matrix factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Y. Yazama ; Dept. of Inf. Sci. & Intelligent Syst., Tokushima Univ., Japan ; Y. Mitsukura ; M. Fukumi ; N. Akamatsu

IN this paper, the feature vector of a few dimensions for the electromyograph (EMG) recognition systems is extracted. We aim at the construction of the comprehensive operation equipment to which the operation used frequently was summarized. Important frequency bands of EMG signals are selected by using a genetic algorithm. The EMG signals are a kind of the living organism signal. The EMG signals based on 7 operations at a wrist are measured and recognized. We perform a recognition experiment of EMG signals by neural network using the selected frequency band. We show the effectiveness of this method by means of computer simulations.

Published in:

Neural Networks, 2003. Proceedings of the International Joint Conference on  (Volume:3 )

Date of Conference:

20-24 July 2003