By Topic

A soft voice activity detector based on a Laplacian-Gaussian model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gazor, S. ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kinston, Ont., Canada ; Wei Zhang

A new voice activity detector (VAD) is developed in this paper. The VAD is derived by applying a Bayesian hypothesis test on decorrelated speech samples. The signal is first decorrelated using an orthogonal transformation, e.g., discrete cosine transform (DCT) or the adaptive Karhunen-Loeve transform (KLT). The distributions of clean speech and noise signals are assumed to be Laplacian and Gaussian, respectively, as investigated recently. In addition, a hidden Markov model (HMM) is employed with two states representing silence and speech. The proposed soft VAD estimates the probability of voice being active (VBA), recursively. To this end, first the a priori probability of VBA is estimated/predicted based on feedback information from the previous time instance. Then the predicted probability is combined/updated with the new observed signal to calculate the probability of VBA at the current time instance. The required parameters of both speech and noise signals are estimated, adaptively, by the maximum likelihood (ML) approach. The simulation results show that the proposed soft VAD that uses a Laplacian distribution model for speech signals outperforms the previous VAD that uses a Gaussian model.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:11 ,  Issue: 5 )