By Topic

Efficient text-independent speaker verification with structural Gaussian mixture models and neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bing Xiang ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Berger, T.

We present an integrated system with structural Gaussian mixture models (SGMMs) and a neural network for purposes of achieving both computational efficiency and high accuracy in text-independent speaker verification. A structural background model (SBM) is constructed first by hierarchically clustering all Gaussian mixture components in a universal background model (UBM). In this way the acoustic space is partitioned into multiple regions in different levels of resolution. For each target speaker, a SGMM can be generated through multilevel maximum a posteriori (MAP) adaptation from the SBM. During test, only a small subset of Gaussian mixture components are scored for each feature vector in order to reduce the computational cost significantly. Furthermore, the scores obtained in different layers of the tree-structured models are combined via a neural network for final decision. Different configurations are compared in the experiments conducted on the telephony speech data used in the NIST speaker verification evaluation. The experimental results show that computational reduction by a factor of 17 can be achieved with 5% relative reduction in equal error rate (EER) compared with the baseline. The SGMM-SBM also shows some advantages over the recently proposed hash GMM, including higher speed and better verification performance.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:11 ,  Issue: 5 )