By Topic

Society and civilization: An optimization algorithm based on the simulation of social behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ray, T. ; Temasek Labs., Nat. Univ. of Singapore, Singapore ; Liew, K.M.

The ability to mutually interact is a fundamental social behavior in all human and insect societies. Social interactions enable individuals to adapt and improve faster than biological evolution based on genetic inheritance alone. This is the driving concept behind the optimization algorithm introduced in this paper that makes use of the intra and intersociety interactions within a formal society and the civilization model to solve single objective constrained optimization problems. A society corresponds to a cluster of points in the parametric space while a civilization is a set of all such societies. Every society has its set of better performing individuals (leaders) that help others to improve through information exchange. This results in the migration of a point toward a better performing point, analogous to an intensified local search. Leaders improve only through an intersociety information exchange that results in the migration of a leader from a society to another. This helps the better performing societies to expand and flourish.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:7 ,  Issue: 4 )