Cart (Loading....) | Create Account
Close category search window
 

MMSE design of redundant FIR precoders for arbitrary channel lengths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mertins, A. ; Sch. of Electr., Comput., & Telecommun. Eng., Univ. of Wollongong, NSW, Australia

The joint design of transmitter and receiver for multichannel data transmission over dispersive channels is considered. The design criterion is the minimization of the mean squared error (MSE) at the receiver output under the constraint of a fixed transmit power. The focus is on the practically important case where the transmitter employs finite impulse response (FIR) filters, and the channel impulse response has arbitrary length. The proposed algorithm allows a straightforward transmitter design and generally yields near-optimal solutions for the transmit filters. Under certain conditions, the exact solutions for optimum block transmission, as known from the literature, are obtained.

Published in:

Signal Processing, IEEE Transactions on  (Volume:51 ,  Issue: 9 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.