By Topic

Preprocessing and segmentation of brain magnetic resonance images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shen, S. ; Dept. of Electron. & Electr. Eng., Strathclyde Univ., Glasgow, UK ; Sandham, W.A. ; Granat, M.H.

This paper describes a process for improving the segmentation of brain magnetic resonance (MR) images. It involves two stages; preprocessing and segmentation. During preprocessing, the image intensities are first standardized using the pixel histograms. Morphological processing is then used to remove the non-brain regions. During the segmentation process, normal and abnormal brain tissues are segmented using both the traditional fuzzy c-means (FCM) clustering algorithm, and a new improved FCM algorithm. Neighborhood effects are considered in the latter method to overcome noise. Segmentation results show that this method is more robust to noise and can improve the integrity of the segmentation performance.

Published in:

Information Technology Applications in Biomedicine, 2003. 4th International IEEE EMBS Special Topic Conference on

Date of Conference:

24-26 April 2003