By Topic

Microfluidic chips for the molecular analysis of human cancer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Backhouse, C.J. ; Dept. of Elecr. & Comput. Eng., Univ. of Alberta, Edmonton, Alta., Canada ; Footz, T. ; Adamia, S. ; Pilarski, L.M.

Although the large-scale analysis of the human genome has provided a wealth of information for the genetic analysis of cancer and other diseases, most of these advances are unavailable in the clinic due to their expense and complexity. The development of miniaturized devices capable of automated real time analysis of genetic profiles is likely to enable routine genetic analysis of diseases such as cancer, whether for diagnosis or for monitoring treatment throughout the course of the disease. Microfluidic chips allow detection of mutations and abnormal gene expression patterns. Here, we describe the application of microfluidic chips for the molecular monitoring of gene expression profiles associated with human cancer. On-chip RT-PCR products are detectable after as few as 15 cycles of PCR, and from individual cells. On-chip detection is as sensitive as or exceeds the sensitivity obtained using conventional technologies.

Published in:

MEMS, NANO and Smart Systems, 2003. Proceedings. International Conference on

Date of Conference:

20-23 July 2003