By Topic

Radiation hardness of silicon detectors for high-energy physics applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
A. Candelori ; Dipt. di Fisica, Univ. di Padova, Italy ; D. Bisello ; R. Rando ; A. Kaminski
more authors

Oxygenated and standard (not oxygenated) silicon diodes processed by CNM and IRST have been irradiated by 27 MeV protons and compared with standard devices from ST Microelectronics. As expected, the leakage current density increase rate (α) and its annealing do not show any significant dependence on starting material, oxygenation and/or device processing. On the contrary, oxygenation improves the radiation hardness by decreasing the acceptor introduction rate (β) and mitigating the depletion voltage (Vdep) increase, with the β parameter depending also on starting material and/or effects related to device processing for standard diodes. Finally, these results are included in a general review on the state of the art for silicon detector radiation hardening, confirming the good performance of the considered technologies.

Published in:

IEEE Transactions on Nuclear Science  (Volume:50 ,  Issue: 4 )