By Topic

Intelligent gamma-ray spectroscopy using 3-D position-sensitive detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lehner, C.E. ; Dept. of Nucl. Eng. & Radiol. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Zhong He ; Knoll, G.F.

The performance of gamma-ray spectrometers at high energies (several MeV) can be greatly improved through intelligent spectroscopic analysis if spatial information is obtained for each energy deposition. In position-sensitive detectors, the energy and three-dimensional (3-D) position of each interaction in the detector are determined. Recognizing the signatures of multiple interactions in the detector can help to reconstruct the energies of the initial gamma-rays even when the full energies are not deposited. Experimental work by our research group has demonstrated the feasibility of carrying out spatially resolved measurements of individual gamma-ray interactions throughout the volume of a CdZnTe spectrometer. We present the results of a simulation study for gamma-rays incident upon a 6-cm3 CdZnTe detector using two reconstruction methods: high-efficiency intelligent spectroscopy (HEIS) in which the peak-to-total ratio is greatly improved relative to traditional spectroscopy while maintaining almost the same intrinsic peak efficiency; and peak-only intelligent spectroscopy (POIS) in which the peak-to-total ratio can approach 0.9, assuming realistic values for energy resolution. Although POIS reduces the intrinsic peak efficiency, it will significantly improve the signal-to-noise ratio for many measurements. The predicted performance is unprecedented for a detector of such small volume and illustrates the gains that can be expected by exploiting 3-D information.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:50 ,  Issue: 4 )