By Topic

Activation properties of Schottky CdTe diodes irradiated by 150 MeV protons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
M. M. Murakami ; Dept. of Phys., Univ. of Tokyo, Japan ; Y. Kobayashi ; M. Kokubun ; I. Takahashi
more authors

Cadmium Telluride (CdTe), with its high photon absorption efficiency, has been regarded as a promising semiconductor material for the next generation X/γ-ray detectors. In order to apply this device to astrophysics, it is essential to investigate the radiation hardness and background properties induced by cosmic-ray protons in orbit. We irradiated Schottky CdTe diodes and a CdTe block with a beam of mono-energetic (150 MeV) protons. The induced activation in CdTe was measured externally with a germanium detector, and internally with the irradiated CdTe diode itself. We successfully identified most of radioactive isotopes induced mainly via (p, xn) reactions, and confirmed that the activation background level of CdTe diode is sufficiently low in orbit. We compared energy resolution and leakage current before and after the irradiation and also monitored the signals from a calibration source during the irradiation. There have been no significant degradation. CdTe diodes are tolerant enough to radioactivity in low earth orbit.

Published in:

IEEE Transactions on Nuclear Science  (Volume:50 ,  Issue: 4 )