By Topic

Plasma molding over surface topography: Simulation and measurement of ion fluxes, energies and angular distributions over trenches in RF high density plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Doosik Kim ; Dept. of Chem. Eng., Univ. of Houston, TX, USA ; Economou, Demetre J. ; Woodworth, J.R. ; Miller, P.A.
more authors

A two-dimensional (2-D) fluid/Monte Carlo (MC) simulation model was developed to study plasma "molding" over a trench. The radio frequency sheath potential evolution and ion density and flux profiles over the surface were predicted with a self-consistent fluid simulation. The trajectories of ions and energetic neutrals (resulting by ion neutralization on surfaces or charge exchange collisions in the gas phase) were then followed with a MC simulation. For sheath thickness Lsh comparable to the trench width D, ions were strongly deflected toward the trench sidewall, and the ion flux along the trench surface contour was highly nonuniform. Irrespective of the trench depth, the normalized spatially-average ion flux at the trench mouth showed a minimum at Lsh/D∼1.0. The normalized spatially-average ion flux at the trench bottom decreased with increasing trench depth (or aspect ratio). As the trench sidewall was approached, the energy spread ΔE of the ion energy distributions (IEDs) at the trench bottom decreased for a thin sheath, but increased for a thick sheath. At the trench bottom, the neutral flux was comparable to the ion flux over the entire range of sheath thickness studied. Simulation results were in good agreement with experimental data on ion flux, IEDs, and ion angular distributions at the trench bottom.

Published in:

Plasma Science, IEEE Transactions on  (Volume:31 ,  Issue: 4 )