Cart (Loading....) | Create Account
Close category search window
 

Experimental and theoretical study of two-dimensional ion flux uniformity at the wafer plane in inductively coupled plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kim, Tae Won ; Dept. of Chem. Eng., Univ. of California, Santa Barbara, CA, USA ; Aydil, E.S.

A two-dimensional array of planar Langmuir probes manufactured on a 200-mm-diameter silicon wafer was used to measure the spatial distribution of ion flux impinging on the wafer surface in various discharges of electropositive (Ar) and electronegative (SF6 and Cl2) gases maintained in an inductively coupled plasma etching reactor with a planar spiral coil. In conjunction with the experiments, a two-dimensional fluid model of the plasma was developed to capture the dependence of the ion flux uniformity on plasma operating parameters and reactor geometry through a set of dimensionless numbers which are the ratios of various time and length scales intrinsic to the discharge. These dimensionless ratios include reactor dimensions, the skin depth, the electron energy relaxation length, ion diffusion length, and ionization and attachment rates. The model provides a simple framework within which the spatial variation of ion flux in inductively coupled plasmas can be understood. The approach captures the dependence of ion flux uniformity on plasma operating variables such as pressure and feed gas composition.

Published in:

Plasma Science, IEEE Transactions on  (Volume:31 ,  Issue: 4 )

Date of Publication:

Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.