Cart (Loading....) | Create Account
Close category search window
 

Tight exponential upper bounds on the ML decoding error probability of block codes over fully interleaved fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sason, I. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Shamai, S. ; Divsalar, D.

We derive tight exponential upper bounds on the decoding error probability of block codes which are operating over fully interleaved Rician fading channels, coherently detected and maximum-likelihood decoded. It is assumed that the fading samples are statistically independent and that perfect estimates of these samples are provided to the decoder. These upper bounds on the bit and block error probabilities are based on certain variations of the Gallager bounds. These bounds do not require integration in their final version and they are reasonably tight in a certain portion of the rate region exceeding the cutoff rate of the channel. By inserting interconnections between these bounds, we show that they are generalized versions of some reported bounds for the binary-input additive white Gaussian noise channel.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 8 )

Date of Publication:

Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.