By Topic

SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Achim, A. ; Med. Phys. Dept., Patras Univ., Greece ; Tsakalides, P. ; Bezerianos, A.

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise, which is due to the coherent nature of the scattering phenomenon. This paper proposes a novel Bayesian-based algorithm within the framework of wavelet analysis, which reduces speckle in SAR images while preserving the structural features and textural information of the scene. First, we show that the subband decompositions of logarithmically transformed SAR images are accurately modeled by alpha-stable distributions, a family of heavy-tailed densities. Consequently, we exploit this a priori information by designing a maximum a posteriori (MAP) estimator. We use the alpha-stable model to develop a blind speckle-suppression processor that performs a nonlinear operation on the data and we relate this nonlinearity to the degree of non-Gaussianity of the data. Finally, we compare our proposed method to current state-of-the-art soft thresholding techniques applied on real SAR imagery and we quantify the achieved performance improvement.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:41 ,  Issue: 8 )