By Topic

Automatic gait recognition based on statistical shape analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Wang ; Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing, China ; Tieniu Tan ; Weiming Hu ; Huazhong Ning

Gait recognition has recently gained significant attention from computer vision researchers. This interest is strongly motivated by the need for automated person identification systems at a distance in visual surveillance and monitoring applications. The paper proposes a simple and efficient automatic gait recognition algorithm using statistical shape analysis. For each image sequence, an improved background subtraction procedure is used to extract moving silhouettes of a walking figure from the background. Temporal changes of the detected silhouettes are then represented as an associated sequence of complex vector configurations in a common coordinate frame, and are further analyzed using the Procrustes shape analysis method to obtain mean shape as gait signature. Supervised pattern classification techniques, based on the full Procrustes distance measure, are adopted for recognition. This method does not directly analyze the dynamics of gait, but implicitly uses the action of walking to capture the structural characteristics of gait, especially the shape cues of body biometrics. The algorithm is tested on a database consisting of 240 sequences from 20 different subjects walking at 3 viewing angles in an outdoor environment. Experimental results are included to demonstrate the encouraging performance of the proposed algorithm.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 9 )