By Topic

One-dimensional dense disparity estimation for three-dimensional reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
L. Oisel ; IRISA, Rennes, France ; E. Memin ; L. Morin ; F. Galpin

We present a method for fully automatic three-dimensional (3D) reconstruction from a pair of weakly calibrated images in order to deal with the modeling of complex rigid scenes. A two-dimensional (2D) triangular mesh model of the scene is calculated using a two-step algorithm mixing sparse matching and dense motion estimation approaches. The 2D mesh is iteratively refined to fit any arbitrary 3D surface. At convergence, each triangular patch corresponds to the projection of a 3D plane. The proposed algorithm relies first on a dense disparity field. The dense field estimation modelized within a robust framework is constrained by the epipolar geometry. The resulting field is then segmented according to homographic models using iterative Delaunay triangulation. In association with a weak calibration and camera motion estimation algorithm, this 2D planar model is used to obtain a VRML-compatible 3D model of the scene.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 9 )