By Topic

Mathematical properties of the JPEG2000 wavelet filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Unser ; Biomed. Imaging Group, Swiss Fed. Inst. of Technol. Lausanne, Switzerland ; T. Blu

The LeGall 5/3 and Daubechies 9/7 filters have risen to special prominence because they were selected for inclusion in the JPEG2000 standard. We determine their key mathematical features: Riesz bounds, order of approximation, and regularity (Holder and Sobolev). We give approximation theoretic quantities such as the asymptotic constant for the L2 error and the angle between the analysis and synthesis spaces which characterizes the loss of performance with respect to an orthogonal projection. We also derive new asymptotic error formulae that exhibit bound constants that are proportional to the magnitude of the first nonvanishing moment of the wavelet. The Daubechies 9/7 stands out because it is very close to orthonormal, but this turns out to be slightly detrimental to its asymptotic performance when compared to other wavelets with four vanishing moments.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 9 )