Cart (Loading....) | Create Account
Close category search window
 

A VQ-based blind image restoration algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nakagaki, R. ; Production Eng. Res. Lab., Hitachi Ltd., Yokohama, Japan ; Katsaggelos, A.K.

Learning-based algorithms for image restoration and blind image restoration are proposed. Such algorithms deviate from the traditional approaches in this area, by utilizing priors that are learned from similar images. Original images and their degraded versions by the known degradation operator (restoration problem) are utilized for designing the VQ codebooks. The codevectors are designed using the blurred images. For each such vector, the high frequency information obtained from the original images is also available. During restoration, the high frequency information of a given degraded image is estimated from its low frequency information based on the codebooks. For the blind restoration problem, a number of codebooks are designed corresponding to various versions of the blurring function. Given a noisy and blurred image, one of the codebooks is chosen based on a similarity measure, therefore providing the identification of the blur. To make the restoration process computationally efficient, the principal component analysis (PCA) and VQ-nearest neighbor approaches are utilized. Simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 9 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.