By Topic

Computational intelligence approach for gene expression data mining and classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zuyi Wang ; Dept. of Electr. Eng., Catholic Univ. of America, Washington, DC, USA ; Sun-Yuan Kung ; Junying Zhang ; Khan, J.
more authors

The exploration of high dimensional gene expression microarray data demands powerful analytical tools. Our data mining software, visual data analyzer (VISDA) for cluster discovery, reveals many distinguishing patterns among gene expression profiles. The model-supported hierarchical data exploration tool has two complementary schemes: discriminatory dimensionality reduction for structure-focused data visualization, and cluster decomposition by probabilistic clustering. Reducing dimensionality generates the visualization of the complete data set at the top level. This data set is then partitioned into subclusters that can consequently be visualized at lower levels and if necessary partitioned again. These approaches produce different visualizations that are compared against known phenotypes from the microarray experiments. For class prediction on cancers using miroarray data, multilayer perceptrons (MLPs) are trained and optimized, whose architecture and parameters are regularized and initialized by weighted Fisher criterion (wFC)-based discriminatory component analysis (DCA). The prediction performance is compared and evaluated via multifold cross-validation.

Published in:

Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on  (Volume:3 )

Date of Conference:

6-9 July 2003