By Topic

Real-time face verification using multiple feature combination and a support vector machine supervisor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Do-Hyung Kim ; Comput. & Software Res. Lab, Electron. & Telecommun. Res. Inst., Daejeon, South Korea ; Jae-Yeon Lee ; Jung Soh ; Yun-Koo Chung

This paper proposes a novel face verification algorithm based on multiple feature combination and a support vector machine. The main issue in face verification is to deal with the variability in appearance. It seems difficult to solve this issue using a single feature. Therefore, a combination of mutually complementary features is necessary to cope with various changes in appearance. From this point of view, we describe the feature extraction approaches based on multiple principal component analysis and edge distribution. These features are projected on a new intra-person/extra-person similarity space that consists of several simple similarity measures, and are finally evaluated by a support vector machine supervisor. From the experiments on a realistic and large database, an equal error rate of 0.029 is achieved, which is a sufficiently practical level for many real-world applications.

Published in:

Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on  (Volume:3 )

Date of Conference:

6-9 July 2003