By Topic

minimum classification error linear regression for acoustic model adaptation of continuous density HMMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaodong He ; Dept. of Comput. Eng. & Comput. Sci., Missouri Univ., USA ; Wu Chou

In this paper, a concatenated "super" string model based minimum classification error (MCE) model adaptation approach is described. We show that the error rate minimization in the proposed approach can be formulated into maximizing a special ratio of two positive functions. The proposed string model is used to derive the growth transform based error rate minimization for MCE linear regression (MCELR). It provides an effective solution to apply MCE approach to acoustic model adaptation with sparse data. The proposed MCELR approach is studied and compared with the maximum likelihood linear regression (MLLR) based model adaptation. Experiments on large vocabulary speech recognition tasks are performed. Experimental results indicate that the proposed MCELR model adaptation can lead to significant speech recognition performance improvement and its performance advantage over the MLLR based approach is observed even when the amount of adaptation data is sparse.

Published in:

Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on  (Volume:1 )

Date of Conference:

6-9 July 2003