By Topic

A statistical multidimensional humming transcription using phone level hidden Markov models for query by humming systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hsuan-Huei Shih ; Integrated Media Syst. Center, Southern California Univ., Los Angeles, CA, USA ; Narayanan, S.S. ; Kuo, C.-C.J.

A new phone level hidden Markov model approach applied to human humming transcription is proposed in this research. A music note has two important attributes, i.e. pitch and duration. The proposed system generates multidimensional humming transcriptions, which contain both pitch and duration information. Query by humming provides a natural means for content-based retrieval from music databases, and this research provides a robust front-end for such an application. The segment of a note in the humming waveform is modeled by phone level hidden Markov models (HMM). The duration of the note segment is then labeled by a duration model. The pitch of the note is modeled by a pitch model using a Gaussian mixture model. Preliminary real-time recognition experiments are carried out with models trained by data obtained from eight human objects, and an overall correct recognition rate of around 84% is demonstrated.

Published in:

Multimedia and Expo, 2003. ICME '03. Proceedings. 2003 International Conference on  (Volume:1 )

Date of Conference:

6-9 July 2003