By Topic

Millimetre wave high efficiency photonic crystal antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Burns, G. ; Dept. of Electron. & Electr. Eng., Glasgow Univ., UK ; Thayne, I.

For a considerable time, the efficiency of planar antennas at high frequency has failed to reach its full potential. Since the planar antenna is an important element in an MMIC transceiver system, this poses a major problem. Due to the nature of the electromagnetic environment the antenna operates in, a large amount of the propagating radiation is coupled into the substrate meaning that only around forty percent efficiency is achieved, especially at millimetre wave frequencies. To improve this situation, methods to control the propagation of electromagnetic radiation from planar antennas is being sought. One method is to use a periodic dielectric structure positioned beneath the radiating antenna to act as a reflector. In this work, the periodic dielectric is a woodpile three-dimensional photonic crystal, fabricated using high resistivity silicon. The photonic crystal has a stop-band in which the resonant frequency of the antenna is contained, thus allowing no signal to pass and thereby reflecting the radiation to enhance the radiation pattern. This paper gives a detailed explanation of the problem, through to the practical results obtained to date from fabrication and measurement.

Published in:

Antennas and Propagation Society International Symposium, 2003. IEEE  (Volume:4 )

Date of Conference:

22-27 June 2003