Cart (Loading....) | Create Account
Close category search window
 

Precorrected-FFT solution of the volume integral equations for inhomogeneous dielectric bodies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiao Chun Nie ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Le Wei Li ; Ning Yuan ; Tat Soon Yeo
more authors

The precorrected-FFT method is applied to the fast solution of the volume integral equation for lossy, inhomogeneous dielectric bodies. The volume of the dielectric body is discretized into tetrahedron elements and the SWG basis functions are employed to expand the unknown electric flux density. The basis functions are then projected onto a uniform grid surrounding the nonuniform mesh, enabling the FFTs to be used to speed up the matrix-vector multipliers in the iterative solution of the matrix equation. The resultant method has a computational complexity and memory requirement of O(N log N) and O(N) respectively.

Published in:

Antennas and Propagation Society International Symposium, 2003. IEEE  (Volume:4 )

Date of Conference:

22-27 June 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.