Cart (Loading....) | Create Account
Close category search window

Temporally constrained ICA: an application to artifact rejection in electromagnetic brain signal analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
James, C.J. ; Biomed. Inf. Eng. Res. Group, Aston Univ., Birmingham, UK ; Gibson, O.J.

Independent component analysis (ICA) is a technique which extracts statistically independent components from a set of measured signals. The technique enjoys numerous applications in biomedical signal analysis in the literature, especially in the analysis of electromagnetic (EM) brain signals. Standard implementations of ICA are restrictive mainly due to the square mixing assumption-for signal recordings which have large numbers of channels, the large number of resulting extracted sources makes the subsequent analysis laborious and highly subjective. There are many instances in neurophysiological analysis where there is strong a priori information about the signals being sought; temporally constrained ICA (cICA) can extract signals that are statistically independent, yet which are constrained to be similar to some reference signal which can incorporate such a priori information. We demonstrate this method on a synthetic dataset and on a number of artifactual waveforms identified in multichannel recordings of EEG and MEG. cICA repeatedly converges to the desired component within a few iterations and subjective analysis shows the waveforms to be of the expected morphologies and with realistic spatial distributions. This paper shows that cICA can be applied with great success to EM brain signal analysis, with an initial application in automating artifact extraction in EEG and MEG.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:50 ,  Issue: 9 )

Date of Publication:

Sept. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.