Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Numerical accuracy of multipole expansion for 2D MLFMA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ohnuki, S. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; Weng Cho Chew

A numerical study of the multipole expansion for the multilevel fast multipole algorithm (MLFMA) is presented. In the numerical implementation of MLFMA, the error comes from three sources: the truncation of the addition theorem; the approximation of the integration; the aggregation and disaggregation process. These errors are due to the factorization of the Green's function which is the mathematical core of the algorithm. Among the three error sources, we focus on the truncation error and a new approach of selecting truncation numbers for the addition theorem is proposed. Using this approach, the error prediction and control can be improved for the small buffer sizes and high accuracy requirements.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:51 ,  Issue: 8 )