By Topic

Calculation of CFIE impedance matrix elements with RWG and n×RWG functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yla-Oijala, P. ; Rolf Nevanlinna Inst., Univ. of Helsinki, Finland ; Taskinen, M.

The method of moments (MoM) solution of combined field integral equation (CFIE) for electromagnetic scattering problems requires calculation of singular double surface integrals. When Galerkin's method with triangular vector basis functions, Rao-Wilton-Glisson functions, and the CFIE are applied to solve electromagnetic scattering by a dielectric object, both RWG and n×RWG functions (n is normal unit vector) should be considered as testing functions. Robust and accurate methods based on the singularity extraction technique are presented to evaluate the impedance matrix elements of the CFIE with these basis and test functions. In computing the impedance matrix elements, including the gradient of the Green's function, we can avoid the logarithmic singularity on the outer testing integral by modifying the integrand. In the developed method, all singularities are extracted and calculated in closed form and numerical integration is applied only for regular functions. In addition, we present compact iterative formulas for computing the extracted terms in closed form. By these formulas, we can extract any number of terms from the singular kernels of CFIE formulations with RWG and n×RWG functions.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:51 ,  Issue: 8 )