By Topic

Dispersion-relation-preserving FDTD algorithms for large-scale three-dimensional problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shumin Wang ; ElectroScience Lab., Ohio State Univ., Columbus, OH, USA ; Teixeira, F.L.

We introduce dispersion-relation-preserving (DRP) algorithms to minimize the numerical dispersion error in large-scale three-dimensional (3D) finite-difference time-domain (FDTD) simulations. The dispersion error is first expanded in spherical harmonics in terms of the propagation angle and the leading order terms of the series are made equal to zero. Frequency-dependent FDTD coefficients are then obtained and subsequently expanded in a polynomial (Taylor) series in the frequency variable. An inverse Fourier transformation is used to allow for the incorporation of the new coefficients into the FDTD updates. Butterworth or Chebyshev filters are subsequently employed to fine-tune the FDTD coefficients for a given narrowband or broadband range of frequencies of interest. Numerical results are used to compare the proposed 3D DRP-FDTD schemes against traditional high-order FDTD schemes.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:51 ,  Issue: 8 )