By Topic

Measurements of small-scale fading and path loss for long range RF tags

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daeyoung Kim ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Ingram, M.A. ; Smith, W.W., Jr.

RF modulated backscatter (RFMB), also known as modulated radar cross section or sigma modulation, is a RF transmission technique useful for short-range, low-data-rate applications, such as nonstop toll collection, electronic shelf tags, freight container identification and chassis identification in automobile manufacturing, that are constrained to have extremely low power requirements. The small-scale fading observed on the backscattered signal has deeper fades than the signal from a traditional one-way link of the same range in the same environment because the fading on the backscattered signal is the product of the fading on the off-board-generated carrier times the fading on the reflected signal. This paper considers the continuous wave (CW) type of RFMB, in which the interrogator transmitter and receiver antennas are different. This two-way link also doubles the path loss exponent of the one-way link. This paper presents the cumulative distribution functions for the measured small-scale fading and the measured path loss for short ranges in an indoor environment at 2.4 GHz over this type of link.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:51 ,  Issue: 8 )