By Topic

Analysis of nonlinear phenomena and design aspects of three-phase space-vector-modulated converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Suto, Z. ; Dept. of Autom. & Appl. Informatics, Budapest Univ. of Technol. & Econ., Hungary ; Nagy, I.

The analysis, design aspects, and numerical results of a current-controlled three-phase space-vector-modulated (SVM) voltage-source converter (VSC) are presented. The aim of the current controller of the VSC is to track the sinusoidal reference currents in each phase. The current controller includes a complex saturation function in order to avoid overmodulation in the SVM. Due to this strong nonlinearity, the study leads to system states not treated so far. An approximate Poincare map is derived. The paper reports saddles in the state space as a consequence of fold bifurcation and other phenomena in conjunction with saddles. Design conditions are derived to avoid undesired operation.

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:50 ,  Issue: 8 )