Cart (Loading....) | Create Account
Close category search window

Optimization of the optical properties of a deeply etched semiconductor electrooptic modulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Obayya, S.S.A. ; Sch. of Eng. & Math. Sci., City Univ. London, UK ; Haxha, S. ; Rahman, B.M.A. ; Themistos, C.
more authors

A rigorous numerical study of a deeply etched semiconductor electrooptic modulator is presented. A Laplace equation solver followed by a full-vectorial modal solution technique for general anisotropic optical waveguides, all based on the versatile finite-element method, is used to find the potential distribution, the modulating electric fields, the changes in the permittivity tensor associated with the electrooptic effect, and the different modes of propagation. In particular, the optimization of the optical properties of the modulator structure such as the half-wave voltage length product VπL and the optical losses due to the imperfectly conducting electrodes has been carefully carried out and results reported. In addition, the effect of the waveguide parameters on the microwave properties such as the microwave index nm and characteristic impedance Zc is explained.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 8 )

Date of Publication:

Aug. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.