By Topic

Diffusion of moisture through fatigue- and aging-resistant polymer coatings on lightguide fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mrotek, J.L. ; Dept. of Ceramic & Mater. Eng., Rutgers Univ., Piscataway, NJ, USA ; Matthewson, M.J. ; Kurkjian, C.R.

In previous work the diffusion rate of water vapor through the polymer coating on optical fiber was estimated by monitoring the strength as a function of time after suddenly changing the ambient humidity. This technique is used here to measure the diffusion of moisture both into and out of two novel fiber coatings. The first specimen is a dual-coated fiber with silica particles added to its secondary coating. It is shown that the improvement in this fiber's reliability is not due to the silica particles adsorbing/absorbing the moisture. The second fiber, coated with a fluorinated polymer, was designed to have higher fatigue resistance as a result of having a lower permeability to moisture. It is found that even though this fiber had higher than normal resistance to fatigue, the diffusion of moisture through this coating was not substantially different than through typical coatings used on fibers for telecommunications applications.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 8 )