By Topic

Demultiplexing using an arrayed-waveguide grating for frequency-interleaved DWDM millimeter-wave radio-on-fiber systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Toda, H. ; Dept. of Commun. Eng., Osaka Univ., Japan ; Yamashita, T. ; Kuri, T. ; Kitayama, K.

The frequency-interleaved dense- wavelength-division-multiplexing (DWDM) millimeter-wave (mm-wave) radio-on-fiber is an indispensable technique to improve the optical spectrum efficiency. We propose possible configurations of multiplexing and demultiplexing (DEMUX) schemes using an arrayed-waveguide grating (AWG) with two input and N output waveguides (N: total channel number). In this paper, we focus on the DEMUX scheme and experimentally demonstrate the DEMUX scheme using a commercially available AWG. In the experiment, 25-GHz-separated two-channel optical double sideband signals modulated by a 60-GHz millimeter-wave carrying a 156-Mb/s data are optically multiplexed by the frequency interleaving. The power penalty after DEMUX, which was due to interchannel interference, was less than 0.5 dB. We also made a transmission experiment over 25-km standard single-mode fiber (SMF). No noticeable power penalty in the received data due to chromatic dispersion of the transmission fiber was observed. This is because only the carrier and a sideband are detected in the proposed DEMUX scheme.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 8 )