By Topic

An analytical formula for the mean differential group delay of randomly birefringent spun fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Galtarossa, A. ; Dept. of Inf. Eng., Univ. of Padova, Italy ; Palmieri, L. ; Pizzinat, A. ; Marks, B.S.
more authors

Polarization-mode dispersion (PMD) is a serious impairment for high-bit-rate optical telecommunication systems. It is known that spinning the fiber during the drawing process drastically reduces the PMD. However, the analysis of pulse propagation through a randomly birefringent spun fiber is still at an early stage. In this paper, we derive an analytical formula for the mean differential group delay of a periodically spun fiber with random birefringence. We model the birefringence with fixed modulus and a random orientation under the condition that the spin period is shorter than the beat length. Finally, we numerically compare the analytical results with those given by the random-modulus model of birefringence, and we obtain good agreement as long as the short-period assumption is satisfied.

Published in:

Lightwave Technology, Journal of  (Volume:21 ,  Issue: 7 )