By Topic

High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pourkamali, S. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Hashimura, A. ; Abdolvand, R. ; Ho, G.K.
more authors

This paper reports on the fabrication and characterization of high-quality factor (Q) single crystal silicon (SCS) in-plane capacitive beam resonators with sub-100 nm to submicron transduction gaps using the HARPSS process. The resonating element is made of single crystal silicon while the drive and sense electrodes are made of trench-refilled polysilicon, yielding an all-silicon capacitive microresonator. The fabricated SCS resonators are 20-40 μm thick and have self-aligned capacitive gaps. Vertical gaps as small as 80 nm in between 20 μm thick silicon structures have been demonstrated in this work. A large number of clamped-free and clamped-clamped beam resonators were fabricated. Quality factors as high as 177000 for a 19 kHz clamped-free beam and 74000 for an 80 kHz clamped-clamped beam were measured under 1 mtorr vacuum. Clamped-clamped beam resonators were operated at their higher resonance modes (up to the fifth mode); a resonance frequency of 12 MHz was observed for the fifth mode of a clamped-clamped beam with the fundamental mode frequency of 0.91 MHz. Electrostatic tuning characteristics of the resonators have been measured and compared to the theoretical values. The measured Q values of the clamped-clamped beam resonators are within 20% of the fundamental thermoelastic damping limits (QTED) obtained from finite element analysis.

Published in:

Microelectromechanical Systems, Journal of  (Volume:12 ,  Issue: 4 )