Cart (Loading....) | Create Account
Close category search window
 

Self-aligned vertical electrostatic combdrives for micromirror actuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Krishnamoorthy, U. ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Lee, S. ; Solgaard, O.

In this paper, we analyze the effect of misalignment in electrostatic combdrives, and describe a fabrication technology that minimizes misalignment in vertical electrostatic combdrives by creating self-aligned, vertically staggered electrodes. Self-alignment of the interdigitated electrodes simplifies fabrication and minimizes failures due to electrostatic instability, thus enabling fabrication of narrow-gap, high-force actuators with high yield. The process is based on deep-reactive ion etching (DRIE) of buried-patterned silicon-on-insulator (SOI) wafers. Measurements on fabricated combdrives show relative misalignment of less than 0.05 μm. This corresponds to less than 0.1% misalignment, which, according to our analysis, results in a travel range of 98% of that for perfectly aligned drives. The validity of the process is demonstrated by fabrication of scanning micromirrors measuring 300 μm by 100 μm. Optical angular deflections from 4° at low frequency to 40° at resonance were measured for an applied voltage of 75 Vpp. Resonant frequencies ranged from 5 kHz to 15 kHz for these devices, making them suitable for high-speed, high-resolution optical scanning and switching.

Published in:

Microelectromechanical Systems, Journal of  (Volume:12 ,  Issue: 4 )

Date of Publication:

Aug. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.