By Topic

Combined numerical and linguistic knowledge representation and its application to medical diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Meesad ; Dept. of Electr. Eng., King Mongkut's Inst. of Technol., Bangkok, Thailand ; G. G. Yen

In this paper, we propose a novel hybrid intelligent system (HIS) which provides a unified integration of numerical and linguistic knowledge representations. The proposed HIS is a hierarchical integration of an incremental learning fuzzy neural network (ILFN) and a linguistic model, i.e., fuzzy expert system (FES), optimized via the genetic algorithm (GA). The ILFN is a self-organizing network. The linguistic model is constructed based on knowledge embedded in the trained ILFN or provided by the domain expert. The knowledge captured from the low-level ILFN can be mapped to the higher level linguistic model and vice versa. The GA is applied to optimize the linguistic model to maintain high accuracy, comprehensibility, completeness, compactness, and consistency. The resulted HIS is capable of dealing with low-level numerical computation and higher level linguistic computation. After the system is completely constructed, it can incrementally learn new information in both numerical and linguistic forms. To evaluate the system's performance, the well-known benchmark Wisconsin breast cancer data set was studied for an application to medical diagnosis. The simulation results have shown that the proposed HIS performs better than the individual standalone systems. The comparison results show that the linguistic rules extracted are competitive with or even superior to some well-known methods. Our interest is not only on improving the accuracy of the system, but also enhancing the comprehensibility of the resulted knowledge representation.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:33 ,  Issue: 2 )