By Topic

On-chip interconnect-aware design and modeling methodology based on high bandwidth transmission line devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
D. Goren ; IBM Haifa R&D Labs, Israel ; M. Zelikson ; R. Gordin ; I. A. Wagner
more authors

This paper expands the on-chip interconnect-aware methodology for high-speed analog and mixed signal design, presented in D. Goren et al. (2002), into a wider class of designs, including dense layout CMOS design. The proposed solution employs a set of parameterized on-chip transmission line (T-line) devices for the critical interconnects, which is expanded to include coplanar structures while considering the silicon substrate effect. The generalized methodology contains treatment of the crossing line effects at the various design stages, including two way interactions between the post layout extraction tool and the T-line devices. The T-line device models are passive by construction, easily migratable among design environments, and allow for both time and frequency domain simulations. These models are verified by S-parameter measurements up to 110GHz, as well as by EM solver results. It is experimentally shown that the effect of properly designed discontinuities is negligible in most practical cases. The basic on-chip T-line methodology is being used extensively for numerous high-speed designs.

Published in:

Design Automation Conference, 2003. Proceedings

Date of Conference:

2-6 June 2003